3.2 General Solutions of Linear Equations

3.2 General Solutions of Linear Equations

1. Linearly Independent Solutions
1.1. Definition of linearly dependent/independent
1.2. Wronskian of n functions
2. n th-order linear differential equation
2.1 homogeneous linear equation

The method of reduction of order
2.2. Nonhomogeneous Equations

1. Linearly Independent Solutions

1.1. Definition of linearly dependent/independent

The n functions $f_{1}, f_{2}, \cdots, f_{n}$ are said to be linearly dependent on the interval I if there exist constants $c_{1}, c_{2}, \cdots, c_{n}$ not all zero such that

$$
c_{1} f_{1}+c_{2} f_{2}+\cdots+c_{n} f_{n}=0
$$

for all x in I.
The n functions $f_{1}, f_{2}, \cdots, f_{n}$ are said to be linearly independent on the interval I if they are not linearly dependent. Equivalently, they are linearly independent on I if

$$
c_{1} f_{1}+c_{2} f_{2}+\cdots+c_{n} f_{n}=0
$$

holds on I only when

$$
c_{1}=c_{2}=\cdots=c_{n}=0
$$

Example 1 Show directly that the given functions are linearly dependent on the real line.
(1) $f(x)=3, \quad g(x)=2 \cos ^{2} x, \quad h(x)=\cos 2 x$
(2) $f(x)=5, \quad g(x)=2-3 x^{2}, \quad h(x)=10+15 x^{2}$ (exercise)

ANS: We need to find C_{1}, C_{2}, C_{3} not all zeros, such that

$$
\begin{aligned}
& c_{1} f(x)+c_{2} g(x)+c_{3} h(x)=0 \quad 2 \cos ^{2} x=\cos 2 x+1 \\
\Rightarrow & c_{1} \cdot 3+c_{2} \cdot\left(\underline{\left(2 \cos ^{2} x\right.}\right)=\frac{\cos 2 x+1}{+c_{3} \cdot \underline{\cos 2 x}=0} \\
\Rightarrow & 3 c_{1}+c_{2} \cdot \cos 2 x+c_{2}+c_{3} \cdot \cos 2 x=0 \\
\Rightarrow & \left(3 c_{1}+c_{2}\right)+\left(c_{2}+c_{3}\right) \cdot \cos 2 x=0
\end{aligned}
$$

We need $\left\{\begin{array}{l}3 c_{1}+c_{2}=0 \\ c_{2}+c_{3}=0\end{array}\right.$
Let $c_{2}=1$, then $c_{3}=-1, \quad c_{1}=-\frac{1}{3}$
Thus $\begin{aligned} & f(x) \\ & \downarrow\end{aligned} \quad g(x) \quad h(x)$

$$
-\frac{1}{3} \cdot 3^{\frac{4}{2}}+1 \cdot 2 \cos ^{2} x-1 \cdot \cos ^{\downarrow} 2 x=0
$$

i.e. $\quad-\frac{1}{3} \cdot f(x)+1 \cdot g(x)-1 \cdot h(x)=0$

Thus $f(x), g(x), h(x)$ are linearly dependent.

1.2. Wronskian of n functions

Suppose that the n functions $f_{1}, f_{2}, \cdots, f_{n}$ are all $n-1$ times differentiable. Then their Wronskian is the $n \times n$ determinant

$$
W(x)=W\left(f_{1}, f_{2}, \cdots, f_{n}\right)=\left|\begin{array}{cccc}
f_{1} & f_{2} & \cdots & f_{n} \\
f_{1}^{\prime} & f_{2}^{\prime} & \cdots & f_{n}^{\prime} \\
\vdots & \vdots & & \vdots \\
f_{1}^{(n-1)} & f_{2}^{(n-1)} & \cdots & f_{n}^{(n-1)}
\end{array}\right|
$$

- The Wronskian of n linearly dependent functions $f_{1}, f_{2}, \cdots, f_{n}$ is identically zero. Idea of the proof:
- We show for the case $n=2$. The case for general n is similar.
- If f_{1} and f_{2} are linearly dependent, then $c_{1} f_{1}+c_{2} f_{2}=0 \quad(*)$ has nontrivial solutions for c_{1} and c_{2} (c_{1} and c_{2} are not all zeros).
- We also have $c_{1} f_{1}^{\prime}+c_{2} f_{2}^{\prime}=0$ from $(*)$.
- Thus we have the linear system of equations

$$
\begin{aligned}
& c_{1} f_{1}+c_{2} f_{2}=0 \\
& c_{1} f_{1}^{\prime}+c_{2} f_{2}^{\prime}=0
\end{aligned}
$$

- By a theorem in linear algebra, the above system of equations has nontrivial solutions if and only if

$$
\left|\begin{array}{ll}
f_{1} & f_{2} \\
f_{1}^{\prime} & f_{2}^{\prime}
\end{array}\right|=0
$$

- So to show that the functions $f_{1}, f_{2}, \cdots, f_{n}$ are linearly independent on the interval I, it suffices to show that their Wronskian is nonzero at just one point of I.

Example 2 Use the Wronskian to prove that the given functions are linearly independent on the indicated interval.
$f(x)=e^{x}, \quad g(x)=\cos x, \quad h(x)=\sin x ; \quad$ the real line
Remark: 3×3 matrix determinant:

$$
\begin{aligned}
\left|\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right| & =a\left|\begin{array}{ll}
e & f \\
h & i
\end{array}\right|-b\left|\begin{array}{ll}
d & f \\
g & i
\end{array}\right|+c\left|\begin{array}{ll}
d & e \\
g & h
\end{array}\right| \\
& =a(e i-f h)-b(d i-f g)+c(d h-e g)
\end{aligned}
$$

ANs: By the previouspage, we know it suffices to show thar $W(f, g, h) \neq 0$ at just one point on the real line.

$$
\begin{aligned}
& W(f, g, h)=\left|\begin{array}{ccc}
f & g & h \\
f^{\prime} & g^{\prime} & h^{\prime} \\
f^{\prime \prime} & g^{\prime \prime} & h^{\prime \prime}
\end{array}\right|=\left|\begin{array}{ccc}
e^{x} & \cos x & \sin x \\
e^{x} & -\sin x & \cos x \\
e^{x} & -\cos x & -\sin x
\end{array}\right| \\
& =e^{x} \cdot\left|\begin{array}{cc}
-\sin x & \cos x \\
-\cos x & -\sin x
\end{array}\right|-\cos x\left|\begin{array}{cc}
e^{x} & \cos x \\
e^{x} & -\sin x
\end{array}\right|+\sin x\left|\begin{array}{ll}
e^{x} & -\sin x \\
e^{x} & -\cos x
\end{array}\right| \\
& =e^{x}\left(\sin ^{2} x+\cos ^{2} x\right)-\cos x\left(-e^{x} \sin x-e^{x} \cos x\right)+\sin x\left(-e^{x} \cos x+e^{x} \sin x\right) \\
& =e^{x}+e^{x} \cos x \sin x+e^{x} \cos ^{2} x-e^{x} \sin x \cos x+\underbrace{e^{x} \sin ^{2} x}
\end{aligned}
$$

$=2 e^{x}$ is never zero on the real line.

$$
\neq 0
$$

So $f(x), g(x), h(x)$ are linearly independent.

2. n th-order linear differential equation

The general \boldsymbol{n} th-order linear differential equation is of the form

$$
P_{0}(x) y^{(n)}+P_{1}(x) y^{(n-1)}+\cdots+P_{n-1}(x) y^{\prime}+P_{n}(x) y=F(x)
$$

We assume that the coefficient functions $P_{i}(x)$ and $F(x)$ are continuous on some open interval I.

2.1 homogeneous linear equation

Similar to Section 3.1, we consider the homogeneous linear equation

$$
\begin{equation*}
y^{(n)}+p_{1}(x) y^{(n-1)}+\cdots+p_{n-1}(x) y^{\prime}+p_{n}(x) y=0 \tag{1}
\end{equation*}
$$

THEOREM 1 Principle of Superposition for Homogeneous Equations

Let $y_{1}, y_{2}, \cdots y_{n}$ be n solutions of the homogeneous linear equation (1) on the interval I. If $c_{1}, c_{2}, \cdots, c_{n}$ are constants, then the linear combination

$$
y=c_{1} y_{1}+c_{2} y_{2}+\cdots+c_{n} y_{n}
$$

is also a solution of Eq. (1) on I.

THEOREM 4 General Solutions of Homogeneous Equations

Let $y_{1}, y_{2}, \cdots y_{n}$ be n linearly independent solutions of the homogeneous equation

$$
\begin{equation*}
y^{(n)}+p_{1}(x) y^{(n-1)}+\cdots+p_{n-1}(x) y^{\prime}+p_{n}(x) y=0 \tag{1}
\end{equation*}
$$

on an open interval I where the p_{i} are continuous. If Y is any solution of Eq. (1), then there exist numbers $c_{1}, c_{2}, \cdots, c_{n}$ such that

$$
Y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{n} y_{n}(x)
$$

for all x in I.

Example $\mathbf{3}$ In the following question, a third-order homogeneous linear equation and three linearly independent solutions are given. Find a particular solution satisfying the given initial conditions.

$$
\begin{aligned}
& x^{3} y^{(3)}+6 x^{2} y^{\prime \prime}+4 x y^{\prime}-4 y=0 ; \\
& y(1)=1, y^{\prime}(1)=5, \quad y^{\prime \prime}(1)=-11, \\
& y_{1}=x, \quad y_{2}=x^{-2}, y_{3}=x^{-2} \ln x
\end{aligned}
$$

ANs: By Thu 4, we know

$$
y(x)=c_{1} y_{1}+c_{2} y_{2}+c_{3} y_{3}
$$

is a general solution. i.e.

$$
y(x)=c_{1} x+c_{2} x^{-2}+c_{3} x^{-2} \ln x
$$

Since $y(1)=1$,

$$
y(1)=c_{1}+c_{2}+c_{3} \cdot \ln 1^{0}=c_{1}+c_{2}=1
$$

Since $\quad y^{\prime}(1)=5$,

$$
\begin{aligned}
y^{\prime}(x) & =c_{1}-2 c_{2} x^{-3}+c_{3}\left(-2 x^{-3} \ln x+x^{-3}\right) \\
y^{\prime}(1) & =c_{1}-2 c_{2}+c_{3} \cdot 1=5 \\
& =c_{1}-2 c_{2}+c_{3}=5
\end{aligned}
$$

Since $\quad y^{\prime \prime}(1)=-11$

$$
\begin{aligned}
y^{\prime \prime}(x) & =6 c_{2} x^{-4}+c_{3}\left(6 x^{-4} \ln x-2 x^{-4}-3 x^{-4}\right) \\
& =6 c_{2} x^{-4}+c_{3}\left(6 x^{-4} \ln x-5 x^{-4}\right) \\
y^{\prime \prime}(1) & =6 c_{2}-5 c_{3}=-11
\end{aligned}
$$

So $\left\{\begin{array}{l}c_{1}+c_{2}=1 \Rightarrow c_{1}=1-c_{2} \\ c_{1}-2 c_{2}+c_{3}=5 \\ 6 c_{2}-5 c_{3}=-11\end{array} \Rightarrow\left\{\begin{array}{l}\left(-3 c_{2}+c_{3}=4\right) \times 2 \\ 6 c_{2}-5 c_{3}=-11 \Rightarrow-3 c_{3}=-3\end{array}\right.\right.$

$$
\begin{aligned}
& \Rightarrow c_{3}=1 \\
& -3 c_{2}+1=4 \Rightarrow c_{2}=-1 \\
& c_{1}=1-c_{2}=1-(-1)=2 .
\end{aligned}
$$

Thus $y=2 x-x^{-2}+x^{-2} \ln x$ is a partioular solution of the given initial value problem.

The method of reduction of order
Suppose that one solution $y_{1}(x)$ of the homogeneous second-order linear differential equation

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{3}
\end{equation*}
$$

is known (on an interval I where p and q are continuous functions). The method of reduction of order consists of substituting $y_{2}(x)=v(x) y_{1}(x)$ in (3) and determine the function $v(x)$ so that $y_{2}(x)$ is a second linearly independent solution of (3).
After substituting $y_{2}(x)=v(x) y_{1}(x)$ in Eq. (3), use the fact that $y_{1}(x)$ is a solution. We can deduce that

$$
y_{1} v^{\prime \prime}+\left(2 y_{1}^{\prime}+p y_{1}\right) v^{\prime}=0
$$

We can solve this for v to find the solution $y_{2}(x)$ of equation (3).
Example 4 Consider the equation

$$
x^{2} y^{\prime \prime}-5 x y^{\prime}+9 y=0(x>0)
$$

Notice that $y_{1}(x)=x^{3}$ is a solution. Substitute $y=v x^{3}$ and deduce that $x v^{\prime \prime}+v^{\prime}=0$. Solve this equation and obtain the second solution $y_{2}(x)=x^{3} \ln x$.
ANS: We write the given equation in the form of $E q(3)$.

$$
\begin{aligned}
y^{\prime \prime}-\frac{5}{x} y^{\prime}+\frac{9}{x^{2}} y=0 \\
\text { Let } \begin{aligned}
y_{2} & =v y_{1}=v x^{3} \\
y_{2}^{\prime} & =\underline{v^{\prime} x^{3}}+\underline{3 v x^{2}} \\
y_{2}^{\prime \prime} & =\underline{v^{\prime \prime} x^{3}+3 v^{\prime} x^{2}}+3 v^{\prime} x^{2}+6 v x \\
& =v^{\prime \prime} x^{3}+6 v^{\prime} x^{2}+6 x v
\end{aligned} \$=\frac{1}{}
\end{aligned}
$$

Plug them into

$$
\begin{aligned}
& \left(v^{\prime \prime} x^{3}+6 v^{\prime} x^{2}+6 x v\right)-\frac{5}{x}\left(v^{\prime} x^{3}+3 v x^{2}\right)+\frac{9}{x^{2}} v \cdot x^{3}=0 \\
\Rightarrow & v^{\prime \prime} x^{3}+6 v^{\prime} x^{2}+6 x v-5 x^{2} v^{\prime}-15 v x+9 v x=0 \\
\Rightarrow & v^{\prime \prime} x^{3}+v^{\prime} x^{2}=0 \\
\Rightarrow & v^{\prime \prime} x+v^{\prime}=0
\end{aligned}
$$

Let $u=v^{\prime}$, then $v^{\prime \prime}=u^{\prime}$. thus

$$
\begin{aligned}
& u^{\prime} x+u=0 \Rightarrow \frac{d u}{d x} x+u=0 \\
& \Rightarrow \frac{d u}{d x} \cdot x=-u \Rightarrow \int \frac{d u}{u}=-\int \frac{d x}{x} \\
& \Rightarrow \ln |u|=-\ln |x|+c \\
& \Rightarrow u=c_{1} e^{-\ln x}=\frac{c_{1}}{x} \\
& \frac{d v}{d x}=v^{\prime}=u=\frac{c_{1}}{x} \\
& \Rightarrow \frac{d v}{d x}=\frac{c_{1}}{x} \Rightarrow v(x)=c_{1} \ln x+c_{2}
\end{aligned}
$$

Let $c_{1}=1, c_{2}=0$, then $v(x)=\ln x$
Thus $y_{2}(x)=v(x) y_{1}(x)=x^{3} \ln x$
2.2. Nonhomogeneous Equations

Now we consider the nonhomogeneous n th-order linear differential equation

$$
\begin{equation*}
y^{(n)}+p_{1}(x) y^{(n-1)}+\cdots+p_{n-1}(x) y^{\prime}+p_{n}(x) y=f(x) \tag{4}
\end{equation*}
$$

with associated homogeneous equation

$$
\begin{equation*}
y^{(n)}+p_{1}(x) y^{(n-1)}+\cdots+p_{n-1}(x) y^{\prime}+p_{n}(x) y=0 \tag{5}
\end{equation*}
$$

THEOREM 5 Solutions of Nonhomogeneous Equations
Let y_{p} be a particular solution of the nonhomogeneous equation in (4) on an open interval I where the functions p_{i} and f are continuous. Let $y_{1}, y_{2}, \cdots y_{n}$ be linearly independent solutions of the associated homogeneous equation in (5). If Y is any solution whatsoever of Eq . (4) on I , then there exist numbers $c_{1}, c_{2}, \cdots, c_{n}$ such that

$$
Y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{n} y_{n}+y_{p}(x)=y_{c}+y_{p}
$$

for all x in I.

Exercise 5 Notice that $y_{p}=3 x$ is a particular solution of the equation

$$
y^{\prime \prime}+4 y=12 x
$$

and that $y_{c}(x)=c_{1} \cos 2 x+c_{2} \sin 2 x$ is its complementary solution. Find a solution of the given equation that satisfies the initial conditions $y(0)=5, y^{\prime}(0)=7$.
ANs: By Thms, we have

$$
y(x)=y_{c}+y_{p}=c_{1} \cos 2 x+c_{2} \sin 2 x+3 x
$$

is a general sold
since $y(0)=5$.

$$
y(0)=C_{1}=5
$$

Since $y^{\prime}(x)=-2 c_{1} \sin 2 x+2 c_{2} \cos 2 x+3$

$$
y^{\prime}(0)=2 c_{2}+3=7 \quad \Rightarrow \quad c_{2}=2
$$

Thus

$$
y(x)=5 \cos 2 x+2 \sin 2 x+3 x
$$

